

Fig. 1

The colored region is revolved about the *y*-axis.

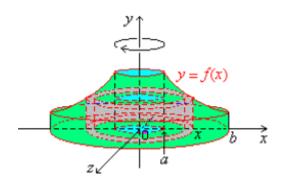


Fig. 2

The solid of revolution and a cylindrical shell.

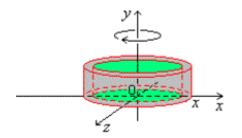
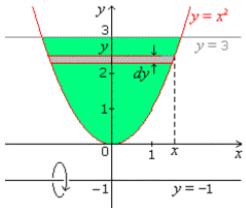


Fig. 3

The cylindrical shell is reproduced here for clarity.

Find the volume of the solid generated by revolving the plane region bounded by $y=x^2$ and y=3 about the line y=-1. Now use the shell method to find that volume.



Plane region bounded by

$$y = x^2$$
 and $y = 3$ is

revolved about line y = -1.

Thickness of shell: dy

Average radius: y-(-1)=y+1

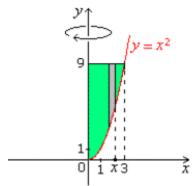
Altitude: $\sqrt{y} - \sqrt{y} = 2\sqrt{y}$

Volume: $2\pi(y+1)\cdot 2\sqrt{y} dy$

$$V = 4\pi \int_{0}^{3} (y+1)\sqrt{y} dy$$

=
$$\frac{112\sqrt{3}\pi}{5}$$
 cubic units.

Use the shell method to find the volume of the solid generated by revolving the plane region bounded by $y = x^2$, y = 9, and x = 0about the y-axis.



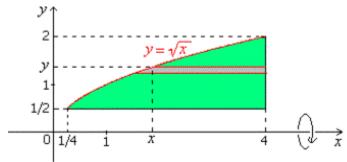
Thickness of shell: dx

Average radius: x

Altitude: $9-x^2$ Volume: $2\pi \cdot x(9-x^2)$

$$V = 2\pi \int_{0}^{3} x(9 - x^{2}) dx$$

Use the shell method to find the volume of the solid generated by revolving the plane region bounded by $y=\sqrt{x}$, $y=\frac{1}{2}$, and x=4 about the *x*-axis.



Thickness of shell: dy

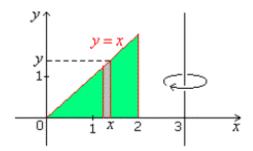
Average radius: y

Altitude: $4 - y^2$

Volume: $2\pi \cdot y(4-y^2)$

$$V = 2\pi \int_{\frac{1}{2}}^{2} y(4 - y^2) dy$$

Use the shell method to find the volume of the solid generated by revolving the triangular region bounded by y=x, y=0, and x=2 about the line x=3.



Thickness of shell: dx

Average radius: 3-x

Altitude: *x*

Volume: $2\pi \cdot (3-x)x$

$$V = 2\pi \int_0^2 (3 - x)x \, dx$$