Formula Sheet

Annuities

Future Value given Rent:
$$F = \left[\frac{(1+i)^n - 1}{i}\right] \cdot R$$

Rent if **P**resent Value is known:
$$R = \frac{1}{a_{n-i}}P$$
 So, $R = \frac{i(1+i)^n}{(1+i)^n-1}P$

Present Value **R**ent is known:
$$P = a_{n-i}R$$
 So, $P = \frac{(1+i)^n - 1}{i(1+i)^n} \cdot R$

where
$$a_{n-i} = \frac{(1+i)^n - 1}{i(1+i)^n}$$

Misc formulas
$$i = \frac{r}{m}$$
 and $n = m \times t$

Compound Interest

Compound Amount:
$$F = (1+i)^n P$$

Present Value:
$$P = \left[\frac{1}{(1+i)^n}\right]F = \frac{F}{(1+i)^n}$$

where i is the interest rate per period and n is the number of interest periods

Simple Interest

Amount:
$$A = (1 + nr) P$$

where r is the interest rate and n is the number of years